Cluster chemistry

LXXV. * Tetra-, penta- and hepta-nuclear clusters derived from $\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right\}_{2}(\mu$-dppa $)$ [dppa $=\mathrm{C}_{2}\left(\mathrm{PPh}_{2}\right)_{2}$]: X-ray structures of $\mathrm{Ru}_{4}(\mu-\mathrm{H})\left[\mu_{3}-\mathrm{HC}_{2} \mathrm{PPh}_{2}\left(\mathrm{Ru}_{4}(\mu-\right.\right.$ $\left.\left.\mathrm{H})_{4}(\mathrm{CO})_{11}\right]\right]\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{9}$ and $\mathrm{Ru}_{7}(\mu-\mathrm{H})_{3}\left(\mu_{5}-\mathrm{HC}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{16}$

Chris J. Adams, Michael I. Bruce *
Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001 (Australia)

Brian W. Skelton and Allan H. White
Department of Chemistry, University of Western Australia, Nedlands, Western Australia 6009 (Australia) (Received July 12, 1991)

Abstract

The reaction between $\mathrm{C}_{2}\left(\mathrm{PPh}_{2}\right)_{2}$ and $\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{12}$ gave $\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right\}_{2}\left(\mu-\mathrm{C}_{2}\left(\mathrm{PPh}_{2}\right)_{2}\right\}$ (1), which on heating formed initially the hydrido- μ_{3}-alkyne bis- Ru_{4} cluster $\mathrm{Ru} u_{4}(\mu-\mathrm{H})\left[\mu_{3}-\right.$ $\left.\mathrm{HC}_{2} \mathrm{PPh}_{2}\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right]\right]\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{9}(2)$ (by cleavage of a $\mathrm{P}-\mathrm{C}(s p)$ bond in 1 and addition of one cluster H atom to the resulting acetylide), followed by the novel $\mathrm{Ru} u_{7}$ cluster $\mathrm{Ru}_{7}(\mu-\mathrm{H})_{3}\left(\mu_{5}-\mathrm{HC}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{16}(3)$. The core in 3 has a new geometry, consisting of an Ru_{4} tetrahedron sharing an apical Ru atom with a $\mathrm{C}_{2} \mathrm{Ru}_{4}$ octahedron; there is a further peripheral $\mathrm{Ru}-\mathrm{Ru}$ interaction linking the two cluster components. By conventional electron counting, 3 is a 108 CVE cluster. Two other minor products isolated from the reaction were $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{PPh}\right)(\mathrm{CO})_{15-3 n}\left(\eta-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right)_{n}$ ($n=0$ and 1).

Introduction

The possibility of using the bis-tertiary phosphine $\mathrm{C}_{2}\left(\mathrm{PPh}_{2}\right)_{2}$ (dppa) to synthesise medium-sized cluster complexes was first demonstrated several years ago [2,3]. Coordination of cluster carbonyls to each end of this non-chelating bidentate ligand afforded complexes such as $\left\{\mathrm{M}_{3}(\mathrm{CO})_{11}\right\}_{2}(\mu$-dppa) ($\mathrm{M}=\mathrm{Ru}$ [2], $\mathrm{Os}[4,5]$), thermolysis of which resulted in cluster condensation involving cleavage of a

[^0]
(1)

(A)

(3)
(2)
$\mathrm{P}-\mathrm{C}(s p)$ bond and coordination of the $\mathrm{C} \equiv \mathrm{C}$ triple bond. In this way, the pentanuclear complexes $\mathbf{M}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}$ were obtained in good to excellent yields ($\mathrm{M}=\mathrm{Ru}, 80 \%$ [2,3]; $\mathrm{M}=\mathrm{Os}, 50 \%$ [4]; $\mathrm{M}_{5}=\mathrm{Os}_{3} \mathrm{Ru}_{2}, 60 \%$ [6]). The chemistry of these interesting complexes is now being explored [7]. This principle of cluster build-up can be applied to other systems and this paper describes the synthesis and characterisation of complexes derived from $\mathrm{Ru}_{4}(\mu$ $\mathrm{H}_{4}(\mathrm{CO})_{12}$.

Results

The complex $\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right\}_{2}(\mu$-dppa) (1) was obtained from the reaction between dppa and two equivalents of either $\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{12}$ or $\mathrm{Ru}_{4}(\mu$ $\mathrm{H}_{4}(\mathrm{CO})_{11}(\mathrm{NCMe})$ in dichloromethane. In the former case, two equivalents of $\mathrm{Me}_{3} \mathrm{NO}$ were added to the solution; both reactions occurred at or below room temperature. Complex 1 was obtained as yellow crystals in about 38% yield from both reactions. It was easily characterised from its IR spectrum, its FAB mass spectrum and by the highfield resonance in the ${ }^{1} \mathrm{H}$ NMR spectra, which was found at $\delta-17.36$ as a doublet $(J(\mathrm{HP})=6.2 \mathrm{~Hz})$; as with other complexes of this type, the cluster-bound H atoms are fluxional.

A toluene solution of 1 was heated at $90^{\circ} \mathrm{C}$ for 1.5 h under N_{2} flush and gave four major bands when separated by preparative TLC. These were identified as $\mathrm{Ru}_{4}(\mu-\mathrm{H})\left\{\mu_{3}-\mathrm{HC}_{2} \mathrm{PPh}_{2}\left[\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right]\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{9} \quad(2), \quad \mathrm{Ru}_{7}(\mu-$ $\mathrm{H})_{3}\left(\mu_{5}-\mathrm{HC}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{16} \quad$ (3), $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{PPh}\right)(\mathrm{CO})_{15}$ (4) and $\mathrm{Ru}_{5}\left(\mu_{4}-\right.$ $\mathrm{PPh})(\mathrm{CO})_{12}(\eta$-PhMe) (5) by X-ray crystallographic studies. Because of experimental difficulties, the quality of the present X -ray structure determinations has not permitted location and refinement of core hydrogen atoms and the presence and

Fig. 1. ORTEP plot of a molecule of $\mathrm{Ru}_{4}(\mu-\mathrm{H})\left[\mu_{3}-\mathrm{C}_{2} \mathrm{PPh}_{2}\left(\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right]\right]\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{10}$ (2), showing atom numbering scheme. Non-hydrogen atoms are shown as 20% thermal ellipsoids; hydrogen atoms have arbitrary radii of $0.1 \AA$.
disposition of the latter must be inferred from other techniques. Complexes 4 and 5 have been obtained on previous occasions and their crystal structures determined [8,9], and so this paper does not include any discussion of their molecular structures.

(4)

(5)

Structure of $R u_{4}(\mu-H)\left\{\mu_{3}-\mathrm{HC}_{2} \mathrm{PPh}_{2}\left[R u_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{1 I}\right]\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{9}(2)$
A molecule of 2 is shown in Fig. 1 and selected bond distances are collected in Table 1. Two tetrahedral Ru_{4} clusters are linked by a $\mathrm{HC}_{2} \mathrm{PPh}_{2}$ ligand which is attached to one cluster (\mathbf{A}) by the alkyne unit bridging a triangular face and to the second cluster (\mathbf{B}) by a normal P-donor interaction. Cluster A contains one \mathbf{H} atom, which gives a singlet at $\delta-17.98$ in the ${ }^{1} \mathrm{H}$ NMR spectrum, and ten CO groups, one of which semibridges the $\mathrm{Ru}(1)-\mathrm{Ru}(4)$ vector $[\mathrm{Ru}(1)-\mathrm{C}(12) 1.968(9)$,

Table 1
Selected bond parameters for 2

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.814(1)$	$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.882(1)$
$\mathrm{Ru}(1)-\mathrm{Ru}(4)$	$2.724(1)$	$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.807(1)$
$\mathrm{Ru}(2)-\mathrm{Ru}(4)$	$2.813(1)$	$\mathrm{Ru}(3)-\mathrm{Ru}(4)$	$2.918(1)$
$\mathrm{Ru}(5)-\mathrm{Ru}(6)$	$2.949(1)$	$\mathrm{Ru}(5)-\mathrm{Ru}(7)$	$2.979(1)$
$\mathrm{Ru}(5)-\mathrm{Ru}(8)$	$2.785(1)$	$\mathrm{Ru}(6)-\mathrm{Ru}(7)$	$2.789(1)$
$\mathrm{Ru}(6)-\mathrm{Ru}(8)$	$2.960(1)$	$\mathrm{Ru}(7)-\mathrm{Ru}(8)$	$2.939(1)$
$\mathrm{Ru}(2)-\mathrm{P}(2)$	$2.324(2)$	$\mathrm{Ru}(4)-\mathrm{P}(2)$	$2.226(2)$
$\mathrm{Ru}(5)-\mathrm{P}(1)$	$2.392(2)$	$\mathrm{Ru}(1)-\mathrm{C}(1)$	$2.125(8)$
$\mathrm{Ru}(2)-\mathrm{C}(2)$	$2.185(7)$	$\mathrm{Ru}(2)-\mathrm{C}(1)$	$2.228(6)$
$\mathrm{Ru}(3)-\mathrm{C}(2)$	$2.104(7)$	$\mathrm{P}(1)-\mathrm{C}(1)$	$1.837(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.393(9)$	$\mathrm{Ru}(1)-\mathrm{C}(12)$	
$\mathrm{Ru}(4)-\mathrm{C}(12)$	$2.610(8)$		
$\mathrm{Ru}-\mathrm{CO}$	range $1.832-1.956(9)$, av. $1.892 \AA$		
$\mathrm{C}-\mathrm{O}$	range $1.12-1.16(1), \mathrm{av} .1 .14 \AA$		
$\mathrm{P}-\mathrm{C}(\mathrm{Ph})$	range $1.80(1)-1.832(7)$, av. $1.817 \AA$		
$\mathrm{Ru}-\mathrm{C}-\mathrm{O}$	range $170.3(7)-180(1)$, av. 176.6°		

$\mathrm{Ru}(4)-\mathrm{C}(12) 2.610(8) \AA$; $\left.\mathrm{Ru}(1)-\mathrm{C}(12)-\mathrm{O}(12) 165.1(7)^{\circ}\right]$. The $\mathrm{Ru}(2)-\mathrm{Ru}(4)$ vector is bridged by the PPh_{2} group $[\mathrm{Ru}(2)-\mathrm{P}(2) 2.324(2), \mathrm{Ru}(4)-\mathrm{P}(2) 2.226(2) \AA]$. The $\mathrm{Ru}-\mathrm{Ru}$ separations range between $2.724(1)$ and $2.918(1) \AA$, the shortest being semi-bridged by $C O(12)$ and the longest being bridged by the remaining metalbonded H atom. The $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$ face is capped by the alkyne, which is π-bonded to $\operatorname{Ru}(2)[\mathrm{Ru}(2)-\mathrm{C}(1) 2.228(6), \mathrm{Ru}(2)-\mathrm{C}(2) 2.185(7) \AA]$ and σ-bonded to $R u(1)$ and $R u(3)[R u(1)-C(1) 2.125(8), R u(3)-C(2) 2.104(7) \AA]$. The $R u_{3}$ face forms an equilateral triangle with one long $[\mathrm{Ru}(1) \mathrm{Ru}(3) 2.882(1) \AA$] and two short edges $[\mathrm{Ru}(1)-\mathrm{Ru}(2) 2.814(1), \mathrm{Ru}(2)-\mathrm{Ru}(3) 2.807(1) \AA]$. The $\mathrm{C}(1)-\mathrm{C}(2)$ separation is $1.393(9) \AA$. The $\equiv C H$ resonance occurs at $\delta 10.56(J(\mathrm{HP})=17.6 \mathrm{~Hz})$.

Cluster B contains four H atoms and 11 CO ligands and is similar to other derivatives of $\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{12}$ containing a tertiary phosphine. The cluster-bound H atoms give rise to a broad resonance between $\delta-16.9$ and -17.5 . Within the cluster, the usual pattern of two short $[2.785,2.789(1) \AA$] and four long [2.939$2.979(1) \AA \mathrm{A}] \mathrm{Ru}-\mathrm{Ru}$ separations is found; the latter are bridged by the four hydrogen atoms so that the $\mathrm{Ru}_{4} \mathrm{H}_{4}$ cluster has $C_{2 r}$ symmetry. A similar arrangement has been found in other substituted derivatives such as $\mathrm{Ru}_{4}(\mu$ -$\mathrm{H})_{4}(\mathrm{CO})_{12-n}(\mathrm{~L})_{n}\left(n=1, \mathrm{~L}=\mathrm{P}(\mathrm{OMc})_{3}[10] ; n=2, \mathrm{~L}=\mathrm{PPh}_{3}[11,12], \mathrm{L}_{2}=\mathrm{dppm}\right.$ [13-15], dppe [16,17]). In 2, each $R u_{4}$ cluster is electron-precise with a 60 -valence electron count.

Structure of $\mathrm{R} u_{7}(\mu-H)_{3}\left(\mu_{5}-\mathrm{HC}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{16}$ (3)
The molecular structure of $\mathbf{3}$ is shown in Fig. 2; important bond distances are given in Table 2. In this case, cluster condensation has occurred to give a novel nine-atom $\mathrm{C}_{2} \mathrm{Ru}_{7}$ cluster consisting of an Ru_{4} tetrahedron sharing an apical atom of an octahedron formed from an Ru_{4} butterfly and two C atoms of a μ_{4}-alkyne ligand; an additional bond is formed between a second Ru atom of the tetrahedron and a hinge atom of the butterfly. The $\mathrm{Ru}-\mathrm{Ru}$ distances range from $2.695(2)$ to

Fig. 2. ORTEP plot of a molecule of $\mathrm{Ru}_{7}(\mu-\mathrm{H})_{3}\left(\mu_{5}-\mathrm{HC}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{16}$ (3), showing atom numbering scheme. Non-hydrogen atoms are shown as 20% thermal ellipsoids; hydrogen atoms have arbitrary radii of $0.1 \AA$.
$2.959(2) \AA$. The shortest is bridged by the PPh_{2} group $[\mathrm{Ru}(6)-\mathrm{P}(7)$ 2.305(4), $\mathrm{Ru}(7)-\mathrm{P}(7) 2.270(4) \AA$]; three $\mathrm{Ru}-\mathrm{Ru}$ separations within the butterfly, including the hinge, are essentially equal [2.774-2.793(2) \AA], while the fourth is somewhat

Table 2
Selected bond parameters for 3

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.876(2)$	$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.959(2)$
$\mathrm{Ru}(1)-\mathrm{Ru}(4)$	$2.832(2)$	$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.746(2)$
$\mathrm{Ru}(2)-\mathrm{Ru}(4)$	$2.854(2)$	$\mathrm{Ru}(3)-\mathrm{Ru}(4)$	$2.911(2)$
$\mathrm{Ru}(3)-\mathrm{Ru}(5)$	$2.884(2)$	$\mathrm{Ru}(4)-\mathrm{Ru}(5)$	$2.845(2)$
$\mathrm{Ru}(4)-\mathrm{Ru}(6)$	$2.793(2)$	$\mathrm{Ru}(5)-\mathrm{Ru}(6)$	$2.778(2)$
$\mathrm{Ru}(5)-\mathrm{Ru}(7)$	$2.774(3)$	$\mathrm{Ru}(6)-\mathrm{Ru}(7)$	$2.695(2)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.318(4)$	$\mathrm{Ru}(6)-\mathrm{P}(7)$	$2.305(4)$
$\mathrm{Ru}(7)-\mathrm{P}(7)$	$2.270(4)$	$\mathrm{P}(1)-\mathrm{C}(1)$	$1.79(1)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.47(2)$	$\mathrm{Ru}(3)-\mathrm{C}(32)$	$1.94(2)$
$\mathrm{Ru}(5)-\mathrm{C}(32)$	$2.56(1)$		

$\mathrm{Ru}-\mathrm{CO}$	range $1.84-1.91(2)$, av. $1.88 \AA$
$\mathrm{C}-\mathrm{O}$	range $1.11-1.17(2)$, av. $1.15 \AA$
$\mathrm{P}-\mathrm{C}(\mathrm{Ph})$	range $1.80-1.83(1)$, av. $1.81 \AA$
$\mathrm{Ru}-\mathrm{C}-\mathrm{O}$	range $169-180(1)$, av. 175°

longer $[R u(4)-R u(5) 2.845(2) \AA]$. There is no regular pattern of bond lengths within the $R u_{4}$ tetrahedron, which range from $2.746(2)$ to $2.959(2) \AA$; there is also an interaction between $\mathrm{Ru}(3)$ and $\mathrm{Ru}(5)$ [separation $2.884(2) \AA$], and this vector is semi-bridged by $\mathrm{CO}(32)[\mathrm{Ru}(3)-\mathrm{C}(32) 1.94(2), \mathrm{Ru}(5)-\mathrm{C}(32) 2.56(1) \AA$.

The phosphino-alkyne is attached via a normal P-donor bond to $\mathrm{Ru}(1)[\mathrm{Ru}(1)-$ $\mathrm{P}(1) 2.318(4) \AA$] and by the $\mathrm{C}_{2} \mathrm{H}$ unit $[\delta 9.85, J(\mathrm{HP})=10.8 \mathrm{~Hz}]$ which is attached to the four Ru atoms $\mathrm{Ru}(4)-\mathrm{Ru}(7)[\mathrm{Ru}-\mathrm{C}, 2.16-2.32(1)$, av. $2.22 \AA$ A . The $\mathrm{C}-\mathrm{C}$ separation is long at $1.47(2) \AA$. The values are similar to those found in $\mathrm{Ru}_{4}\left(\mu_{4}{ }^{-}\right.$ $\left.\mathrm{C}_{2} \mathrm{Ph}_{2}\right)(\mathrm{CO})_{12}$ [18].

The ${ }^{1} \mathrm{H}$ NMR spectrum contains three equal intensity $\mathrm{Ru}-\mathrm{H}$ resonances at δ $-12.54\left(\mathrm{H}_{\mathrm{a}}, \mathrm{d}, J(\mathrm{HP})=18.0 \mathrm{~Hz}\right),-17.02\left(\mathrm{H}_{\mathrm{b}}, \mathrm{d}, J(\mathrm{HP})=12.1 \mathrm{~Hz}\right)$ and -18.74 $\left(\mathrm{H}_{\mathrm{c}}, \mathrm{s}\right)$. None of these cluster-bound H atoms was located in the X-ray structure determination. Applying the usual criterion of lengthening of an H -bridged $\mathrm{Ru}-\mathrm{Ru}$ bond, two possible locations are $\mathrm{Ru}(1)-\mathrm{Ru}(3)$ [2.959(2) \AA] and $\mathrm{Ru}(3)-\mathrm{Ru}(4)$ [2.911(2) \AA]; the latter is remote from the phosphorus atoms and may be bridged by H_{c}, and the former by H_{a} or H_{b}. The next two longest bonds are $\mathrm{Ru}(3)-\mathrm{Ru}(5)$ [$2.884(2) \AA$] and $\operatorname{Ru}(1)-\operatorname{Ru}(2)$ [2.876(2) \AA]; the former is semi-bridged by $\mathrm{CO}(32)$, so we suggest the third H atom (H_{b} or H_{a}) bridges the $\mathrm{Ru}(1)-\mathrm{Ru}(2)$ vector.

Discussion

The synthesis of $\mathbf{1}$, containing an $\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}$ cluster attached to each end of the dppa ligand, is straightforward and occasions no special comment. Thermal condensation of the bis-cluster complex afforded two complexes, 2 containing eight Ru atoms, and $\mathbf{3}$ containing seven Ru atoms. The former is formed by addition of the bisphosphino-acetylene across one Ru_{3} face of one of the Ru_{4} clusters, to give $\mu-\mathrm{PPh}_{2}$ and $\mu_{3}-\mathrm{C}_{2} \mathrm{PPh}_{2}$ groups by cleavage of one of the two $\mathrm{C}(s p)-\mathrm{P}$ bonds in the coordinated dppa ligand. The phosphino-acetylide group combines with a cluster-bound hydride to give the phosphino-ethyne, as confirmed by observation of the acetylenic proton resonance. A similar transformation has been seen in the hydrogenation of $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}$ to $\mathrm{Ru}_{4}(\mu-\mathrm{H})_{3}\left(\mu_{4}-\mathrm{HC}_{2} \mathrm{PPh}_{2}\right)$ $\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{10}$ [20]. The second Ru_{4} cluster is unchanged, remaining coordinated to the P atom of the phosphino-acetylene.

Further condensation results in elimination of one Ru atom (which is found as $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and $\left.\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{12}\right)$ and formation of an Ru_{7} cluster, the geometry of which consists of four edge-fused triangles, the end one of which is capped by the seventh Ru atom. The PPh_{2} group is attached to the outer edge of the $\mathrm{Ru} u_{3}$ triangle at the other end of the array, while the phosphino-ethyne in $\mathbf{2}$ has been incorporated into a distorted octahedral $\mathrm{C}_{2} \mathrm{Ru}_{4}$ cluster. Although it is not possible to label the Ru atoms, a likely route to $\mathbf{3}$ is further interaction of the acetylene ligand with the second Ru_{4} cluster and elimination of the eighth Ru , which is the one not involved in bonding to ligands other than H or CO in 2 (Scheme 1).

There are relatively few Ru_{7} clusters known, all of which contain Main Group atoms or ligands as an essential part of the core. The structurally characterised derivatives include $\mathrm{Ru}_{7}\left(\mu_{4}-\mathrm{PPh}\right)_{2}(\mathrm{CO})_{18-3 n}\left(\eta^{6}-\mathrm{PhMe}\right)_{n}(n=0$ [21], 1 [9]) (two PRu_{5} octahedra sharing an Ru_{3} triangular face), $\mathrm{Ru}_{7}\left(\mu_{4}-\mathrm{S}\right)(\mathrm{CO})_{21}$ [an octahedral SRu_{5} unit with two equatorial edges bridged by $\mathrm{Ru}(\mathrm{CO})_{4}$ groups] [22], and

(A)
(2)

(3)

Scheme 1
$\mathrm{Ru}_{7}\left(\mu_{4}-\mathrm{S}\right)_{2}(\mathrm{CO})_{20}$ [a bipyramidal $\mathrm{S}_{2} \mathrm{Ru}_{5}$ unit, with two $\mathrm{Ru}-\mathrm{Ru}$ apical-equatorial edges bridged by $\mathrm{Ru}(\mathrm{CO})_{4}$ units] [23]. In $\mathrm{Ru}_{7}\left(\mu_{6}-\mathrm{H}\right)\left(\mu-\mathrm{CNMe}_{2}\right)(\mathrm{CO})_{19}$, with capped octahedral geometry, the octahedron contains an interstitial H atom [24], while in $\mathrm{Ru}_{7}(\mu-\mathrm{H})_{8}\left(\mu_{6}-\mathrm{P}\right)\left(\mu_{3}-\mathrm{PBu}\right)\left(\mu-\mathrm{PBu}_{2}\right)(\mathrm{CO})_{12}\left(\mathrm{PBu}_{3}\right)_{3}$, a tricyclo- Ru_{6} unit with the boat conformation containing a central \mathbf{P} atom has one edge of the central PRu_{4} portion bridged by an $\mathrm{Ru}(\mathrm{CO})_{3}$ group; the resulting Ru_{3} triangle is capped by the PBu group [25].

Individual electron counts for the seven metal atoms in 3 leave $\mathrm{Ru}(1)$ and $\mathrm{Ru}(2)$ electron-deficient unless two hydrogens bridge $\mathrm{Ru}-\mathrm{Ru}$ vectors involving these atoms, as suggested above. A formal $\mathrm{Ru} \rightarrow \mathrm{Ru}$ donor bond from $\mathrm{Ru}(4)$ to $\mathrm{Ru}(6)$, together with placement of the third cluster H atom on the $\mathrm{Ru}(3)-\mathrm{Ru}(4)$ vector allows two of these three Ru atoms to become electronically saturated. The semi-bridging $\mathrm{CO}(32)$ also serves to redistribute some electron density within the cluster. However, using Mingos's approach [19], cluster 3 can be considered as an Ru_{4} tetrahedron (60 CVE) and a $\mathrm{C}_{2} \mathrm{Ru}_{4}$ octahedron (66 CVE) sharing the apical $\mathrm{Ru}(4)$ atom. The appropriate electron count is thus: $(60+66)-18=108$. This count is achieved from: $7 \mathrm{Ru}(56)+2 \mathrm{C}(8)+16 \mathrm{CO}(32)+3 \mathrm{H}(3)+\mathrm{PR}_{3}(2)+\mathrm{PR}_{2}(3)$ $+2 \mathrm{R}(2)+\mathrm{Ru}-\mathrm{Ru}(2)=108$, where 2 R are the alkyne substituents and $\mathrm{Ru}-\mathrm{Ru}$ is the further interaction between $\mathrm{Ru}(3)$ and $\mathrm{Ru}(5)$.

The two minor products, 4 and 5 , contain the familiar octahedral $P R u_{5}$ cluster and have been formed by extensive degradation of $\mathbf{1}$, resulting in loss of a phenyl
group and the C_{2} moiety. Isomerisation of $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}$ by migration of PPh to the Ru_{5} cluster and concomitant formation of a cluster-bound PhC_{2} group has been described [26]; while we have not been able to convert this isomer to 4 (5 is presumably formed by reaction of 4 with the toluene solvent), it is likely that similar transformations are involved in the formation of these complexes.

Conclusion

Condensation of $\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right\}_{2}(\mu-\mathrm{dppa})(\mathbf{1})$ afforded the bis- Ru_{4} cluster 2 by cleavage of one of the $\mathrm{C}(s p)-\mathrm{P}$ bonds in the dppa ligand and addition of the resulting PPh_{2} and $\mathrm{C}_{2} \mathrm{PPh}_{2}$ groups to one of the Ru_{4} clusters. Addition of one cluster H atom to the acetylide carbon gives a $\mu_{3}-\eta^{2}-\mathrm{HC}_{2} \mathrm{PPh}_{2}$ ligand. Further condensation resulted in elimination of one Ru atom and formation of 3 , containing an $R u_{7}$ cluster of novel geometry in which an $R u_{4}$ tetrahedron shares an apical Ru atom of a $\mathrm{C}_{2} \mathrm{Ru}_{4}$ octahedron. The results further illustrate the utility of the acetylenic di-tertiary phosphine dppa in the synthesis of novel cluster complexes.

Experimental

General methods, reaction conditions and instrumentation have been described earlier [27].

Starting materials. $\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{12}$ was obtained from $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and H_{2} [28]; $\mathrm{C}_{2}\left(\mathrm{PPh}_{2}\right)_{2}$ was used as received from Strem Chemicals, Inc. (Newburyport, MA).

Preparation of $R u_{4}(\mu-H)_{4}(\mathrm{CO})_{1 l}(\mathrm{NCMe})$
A solution of TMNO ($30 \mathrm{mg}, 0.399 \mathrm{mmol}$) in $\mathrm{MeCN}(3 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added dropwise over ca. 40 min. to a suspension of $\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{12}(210 \mathrm{mg}$, 0.282 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ and $\mathrm{MeCN}(5 \mathrm{ml})$ until no $\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{12}$ remained (TLC). After reduction of the solvent volume (to ca. 2 ml MeCN) sufficient $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to dissolve any precipitated $\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}(\mathrm{NCMe})$. This solution was purified on a chromatotron (light petroleum/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeCN}$ $20 / 5 / 2$) to yield a red solution of $\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}(\mathrm{NCMe})$ [IR: $\nu(\mathrm{CO})(5 \%$ MeCN in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 2096vw, 2081m, 2066vs, 2058(sh), 2024s, 2008(sh), 1990(sh), $1958 \mathrm{vw} \mathrm{cm}{ }^{-1}$].

Preparation of $\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right\}_{2}(\mu-d p p a)$ (1)
To a solution of $\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}(\mathrm{NCMe})$ in a mixture of light petroleum, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeCN \{from $\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{12}(260 \mathrm{mg}, 0.349 \mathrm{mmol})$ \}, cooled to $-64^{\circ} \mathrm{C}$, was added dppa ($60 \mathrm{mg}, 0.15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$, dropwise over ca. 25 min . After warming to room temperature solvents were removed and the residue purified by preparative TLC (light petroleum/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 3 / 1$). The major product ($R_{f} 0.5$) was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ to yield yellow crystals of $\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right\}_{2}(\mu$-dppa) (1) (120 mg, $38 \%)$. Anal. Found: C, 31.38; H, 1.48\%; M (mass spectrometry), 1827. $\mathrm{C}_{48} \mathrm{H}_{28} \mathrm{O}_{22} \mathrm{P}_{2} \mathrm{Ru}_{8}$ calc.: C, 31.55; H, 1.54; M, 1827. IR: $\nu(\mathrm{CO})$ (cyclohexane) $2095 \mathrm{~m}, 2080 \mathrm{w}, 2070 \mathrm{vs}, 2059 \mathrm{~s}, 2029 \mathrm{~s}, 2014(\mathrm{sh}), 2010 \mathrm{~s}$, $2000(\mathrm{sh}), 1995(\mathrm{sh}), 1969 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right)-17.36(8 \mathrm{H}, \mathrm{d}, J(\mathrm{HP}) 6.2$ $\mathrm{Hz}, \mathrm{Ru}-\mathrm{H}), 7.40-7.70(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$. FAB MS $(\mathrm{m} / \mathrm{z}): 1827,[\mathrm{M}]^{+}$.

Alternatively, a solution of $\mathrm{Me}_{3} \mathrm{NO}(45 \mathrm{mg}, 0.60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml) was added dropwise to a solution of $\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{12}(400 \mathrm{mg}, 0.54 \mathrm{mmol})$ and dppa ($113 \mathrm{mg}, 0.27 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{ml})$. Solvent was removed and the residue chromatographed (Florisil column). Light petroleum eluted $\mathrm{Ru}_{4}\left(\mu-\mathrm{H}_{4}(\mathrm{CO})_{12}\right.$ (19 $\mathrm{mg}, 5 \%)$. Light petroleum $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 / 1)$ eluted a yellow band which was recrystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to yield $\left(\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right\}_{2}(\mu$-dppa) ($190 \mathrm{mg}, 39 \%$).

Pyrolysis of $\left\{R u_{4}(\mu-H)_{4}(\mathrm{CO})_{H}\right\}_{2}(\mu-d p p a)$
Nitrogen was bubbled through a solution of $\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right\}_{2}(\mu$-dppa) (75 $\mathrm{mg}, 0.041 \mathrm{mmol})$ in toluene (40 ml) at $90^{\circ} \mathrm{C}$ for 1.5 h . The solvent was removed and the residue purified by preparative TLC (light petroleum/acetone 5/1). Four major bands were collected; a green band ($R_{\mathrm{f}} 0.6$) was recrystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ / $\mathrm{MeOH})$ to yield $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{PPh}\right)(\mathrm{CO})_{15}(4)(5 \mathrm{mg}, 12 \%)$, m.p. $>300^{\circ} \mathrm{C}$ (dec.). Anal. Found: C, 24.33; H, 0.45%; $[M+\mathrm{H}]^{+}$, 1035. $\mathrm{C}_{21} \mathrm{H}_{5} \mathrm{O}_{15} \mathrm{PRu}_{5}$ calc.: C, 24.40; H, 0.49%; M, 1034. IR: $\nu(\mathrm{CO})$ (cyclohexane) 2094vw, 2056vs, 2032s, 2009vw, 1992w cm^{-1} (lit. [8]: $\nu(\mathrm{CO})$ (toluene) $2095 \mathrm{w}, 2056 \mathrm{~s}, 2030 \mathrm{~s} \mathrm{~cm}^{-1}$). FAB MS $(m / z): 1035$, $[M+\mathrm{H}]^{+} ; 1006-614\left([M-n \mathrm{CO}]^{+}, n=1-8,15\right)$. A red band ($R_{\mathrm{f}} 0.5$) was recrystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to yield $\mathrm{Ru}_{4}(\mu-\mathrm{H})\left\{\mu_{3}-\mathrm{HC}_{2} \mathrm{PPh}_{2}\left[\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right]\right\}(\mu-$ $\left.\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{9}(2)(12 \mathrm{mg}, 16 \%)$, m.p. $152-153^{\circ} \mathrm{C}$ (dec.). This complex is unstable on the TLC plate, the IR spectrum of the crude mixture indicating that it is present in much larger amount; however, we were unable to find a satisfactory method of separating 2 in higher yield. Anal. Found: C, $31.21 ; \mathrm{H}, 1.53 \% ; M$ (mass spectrometry), 1799. $\mathrm{C}_{47} \mathrm{H}_{28} \mathrm{O}_{21} \mathrm{P}_{2} \mathrm{Ru}_{8}$ calc.: C, $31.38 ; \mathrm{H}, 1.54 \%$; M, 1799. IR:

Table 3
Crystal data and refinement details for 2 and 3

	2	3
Formula	$\mathrm{C}_{47} \mathrm{H}_{28} \mathrm{O}_{21} \mathrm{P}_{2} \mathrm{Ru}_{8}$	$\mathrm{C}_{42} \mathrm{H}_{29} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{Ru}_{7} \cdot 0.78 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
M.W.	1799	1525
Crystal system	Triclinic	Monoclinic
Space group	Pİ; No. 2	P21/c; No. 14
a, \AA	18.967(5)	15.357(4)
b, \AA	14.964(3)	13.639(11)
c, \AA	11.279(2)	24.815(9)
α, deg.	107.36(2)	-
β, deg.	101.58(2)	104.97(1)
γ, deg.	102.43(2)	-
U, \AA^{3}	2861	5021
Z	2	4
$D_{c}, \mathrm{~g} \mathrm{~cm}^{-3}$	2.08	2.02
F (000)	1720	2906.4
Crystal size, mm	$0.07 \times 0.26 \times 0.20$	$0.05 \times 0.20 \times 0.15$
A^{\star} (min, max)	1.13, 1.57	1.23, 1.30
μ, cm^{-1}	19.8	20.5
$2 \theta_{\text {max }}$, deg.	60	50
N	10041	8833
$N_{\text {o }}$	7763	4800
R	0.038	0.051
$R_{\text {W }}$	0.043	0.049

$\nu(\mathrm{CO})$ (cyclohcxanc) 2094m, 2079w, 2066w, 2057(sh), 2036m, 2024(sh), 2019s, $2012 \mathrm{~m}, 2007$ (sh), 1992m, 1986(sh), $1963(\mathrm{sh}), 1957 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right)$ $-17.98(1 \mathrm{H}, \mathrm{s} \mathrm{Ru}-\mathrm{H}),-17.54(4 \mathrm{H}, \mathrm{m}(\mathrm{br}), \mathrm{Ru}-\mathrm{H}), 7.38-7.67$ ($20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 10.56 (1 H , d $J(\mathrm{HP}) 17.6 \mathrm{~Hz}, \mathrm{CCH}$). FAB MS (m / z): 1799, $[M]^{+} ; 1771-1211$ ([$M-$ $\left.n \mathrm{CO}]^{+}, n=1,4-13\right)$; $1134(M-21 \mathrm{CO}-\mathrm{Ph}]^{+}$. A black band ($R_{\mathrm{f}} 0.35$) was recrystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to yield $\mathrm{Ru}_{7}(\mu-\mathrm{H})_{3}\left(\mu_{5}-\mathrm{HC}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{16}$

Table 4
Non-hydrogen atomic coordinates and equivalent isotropic thermal parameters for 2

Atom	x	y	z	$U_{\mathrm{cq}}\left(\mathrm{A}^{2}\right)$
$\mathrm{Ru}(1)$	$0.85092(3)$	$0.55141(4)$	$0.59148(5)$	$0.0324(2)$
$\mathrm{Ru}(2)$	$0.75178(3)$	$0.57583(4)$	$0.38986(5)$	$0.0325(2)$
$\mathrm{Ru}(3)$	$0.69024(3)$	$0.47220(4)$	$0.53371(5)$	$0.0350(2)$
$\mathrm{Ru}(4)$	$0.77938(3)$	$0.39506(4)$	$0.36775(5)$	$0.0391(3)$
$\mathrm{Ru}(5)$	$0.76475(3)$	$0.90201(4)$	$0.62900(6)$	$0.0363(2)$
$\mathrm{Ru}(6)$	$0.71511(4)$	$1.00545(5)$	$0.84869(6)$	$0.0518(3)$
$\mathrm{Ru}(7)$	$0.60990(4)$	$0.84066(5)$	$0.65387(7)$	$0.0499(3)$
$\mathrm{Ru}(8)$	$0.66739(4)$	$1.01157(4)$	$0.58548(6)$	$0.0464(3)$
$\mathrm{C}(11)$	$0.9286(4)$	$0.5982(5)$	$0.5224(7)$	$0.044(3)$
$\mathrm{O}(11)$	$0.9744(3)$	$0.6213(4)$	$0.4780(6)$	$0.067(3)$
$\mathrm{C}(12)$	$0.8771(4)$	$0.4304(6)$	$0.5876(8)$	$0.051(4)$
$\mathrm{O}(12)$	$0.8956(3)$	$0.3700(4)$	$0.6136(5)$	$0.065(3)$
$\mathrm{C}(13)$	$0.9120(4)$	$0.6070(5)$	$0.7708(7)$	$0.045(3)$
$\mathrm{O}(13)$	$0.9507(3)$	$0.6347(4)$	$0.8718(5)$	$0.068(3)$
$\mathrm{C}(21)$	$0.6715(5)$	$0.6156(6)$	$0.3155(7)$	$0.054(4)$
$\mathrm{O}(21)$	$0.6227(4)$	$0.6395(5)$	$0.2749(6)$	$0.089(4)$
$\mathrm{C}(22)$	$0.8170(5)$	$0.6547(6)$	$0.3301(7)$	$0.053(4)$
$\mathrm{O}(22)$	$0.8573(4)$	$0.7021(4)$	$0.2977(6)$	$0.080(3)$
$\mathrm{C}(31)$	$0.6742(5)$	$0.3325(6)$	$0.5024(8)$	$0.056(4)$
$\mathrm{O}(31)$	$0.6602(4)$	$0.2542(4)$	$0.4979(7)$	$0.086(4)$
$\mathrm{C}(32)$	$0.5930(5)$	$0.4522(5)$	$0.4235(8)$	$0.055(4)$
$\mathrm{O}(32)$	$0.5353(3)$	$0.4454(5)$	$0.3662(6)$	$0.077(3)$
$\mathrm{C}(33)$	$0.6580(4)$	$0.4949(5)$	$0.6881(8)$	$0.052(4)$
$\mathrm{O}(33)$	$0.6403(4)$	$0.5063(5)$	$0.7802(6)$	$0.084(3)$
$\mathrm{C}(41)$	$0.7430(5)$	$0.2581(6)$	$0.2944(8)$	$0.060(4)$
$\mathrm{O}(41)$	$0.7225(4)$	$0.1756(4)$	$0.2509(7)$	$0.094(4)$
$\mathrm{C}(42)$	$0.8617(5)$	$0.3834(6)$	$0.3078(7)$	$0.058(4)$
$\mathrm{O}(42)$	$0.9143(4)$	$0.3787(5)$	$0.2739(6)$	$0.083(3)$
$\mathrm{C}(51)$	$0.8514(4)$	$1.0048(6)$	$0.6710(8)$	$0.051(4)$
$\mathrm{O}(51)$	$0.9050(3)$	$1.0685(4)$	$0.7002(7)$	$0.081(3)$
$\mathrm{C}(52)$	$0.7571(5)$	$0.8614(6)$	$0.4516(8)$	$0.057(4)$
$\mathrm{O}(52)$	$0.7526(4)$	$0.8400(5)$	$0.3447(5)$	$0.084(4)$
$\mathrm{C}(61)$	$0.6438(6)$	$1.0612(7)$	$0.911(1)$	$0.087(5)$
$\mathrm{O}(61)$	$0.6001(5)$	$1.0929(7)$	$0.9475(9)$	$0.148(6)$
$\mathrm{C}(62)$	$0.8015(6)$	$1.167(7)$	$0.9466(9)$	$0.086(5)$
$\mathrm{O}(62)$	$0.8519(5)$	$1.1819(6)$	$1.0033(8)$	$0.144(5)$
$\mathrm{C}(63)$	$0.7228(6)$	$0.9453(7)$	$0.9751(9)$	$0.076(5)$
$\mathrm{O}(63)$	$0.7242(5)$	$0.9120(6)$	$1.0521(7)$	$0.120(5)$
$\mathrm{C}(71)$	$0.5433(5)$	$0.7357(6)$	$0.5006(9)$	$0.062(4)$
$\mathrm{O}(71)$	$0.5008(4)$	$0.6746(5)$	$0.4148(7)$	$0.101(4)$
$\mathrm{C}(72)$	$0.5328(5)$	$0.8759(7)$	$0.076(5)$	
$\mathrm{O}(72)$	$0.4818(4)$	$0.8951(6)$	$0.7512(5)$	
$\mathrm{C}(73)$	$0.6248(5)$	$0.7616(7)$	$068(4)$	
			$0.7552(9)$	

Table 4 (continued)

Atom	x	y	z	$U_{\text {eq }}\left(\mathrm{A}^{2}\right)$
$\mathrm{O}(73)$	$0.6329(4)$	$0.7136(5)$	$0.8149(7)$	$0.091(4)$
$\mathrm{C}(81)$	$0.6379(5)$	$0.9546(6)$	$0.4037(7)$	$0.057(4)$
$\mathrm{O}(81)$	$0.6125(5)$	$0.9232(6)$	$0.2935(7)$	$0.126(5)$
$\mathrm{C}(82)$	$0.7444(5)$	$1.1064(6)$	$0.5794(9)$	$0.068(4)$
$\mathrm{O}(82)$	$0.7944(4)$	$1.1651(5)$	$0.5702(7)$	$0.094(4)$
$\mathrm{C}(83)$	$0.6002(5)$	$1.0883(6)$	$0.5995(9)$	$0.064(4)$
$\mathrm{O}(83)$	$0.5573(4)$	$1.1324(5)$	$0.6133(8)$	$0.103(4)$
$\mathrm{P}(1)$	$0.8369(1)$	$0.7986(1)$	$0.6798(2)$	$0.0328(7)$
$\mathrm{C}(111)$	$0.8552(4)$	$0.8122(5)$	$0.8509(6)$	$0.036(3)$
$\mathrm{C}(112)$	$0.8166(4)$	$0.7417(5)$	$0.8902(7)$	$0.044(3)$
$\mathrm{C}(113)$	$0.8292(5)$	$0.7559(6)$	$1.0203(8)$	$0.064(4)$
$\mathrm{C}(14)$	$0.8801(6)$	$0.8402(7)$	$1.1122(8)$	$0.072(4)$
$\mathrm{C}(115)$	$0.9179(5)$	$0.9104(6)$	$1.0744(7)$	$0.064(4)$
$\mathrm{C}(116)$	$0.9051(4)$	$0.8980(5)$	$0.9448(7)$	$0.050(3)$
$\mathrm{C}(121)$	$0.9310(4)$	$0.8289(5)$	$0.6582(7)$	$0.039(3)$
$\mathrm{C}(122)$	$0.9943(4)$	$0.8193(5)$	$0.7380(7)$	$0.048(3)$
$\mathrm{C}(123)$	$1.0637(4)$	$0.8403(6)$	$0.7147(8)$	$0.059(4)$
$\mathrm{C}(124)$	$1.0716(5)$	$0.8719(7)$	$0.613(1)$	$0.075(5)$
$\mathrm{C}(125)$	$1.0109(5)$	$0.8810(7)$	$0.5356(9)$	$0.074(5)$
$\mathrm{C}(126)$	$0.9427(5)$	$0.8617(6)$	$0.5600(8)$	$0.052(4)$
$\mathrm{C}(1)$	$0.7991(4)$	$0.6649(5)$	$0.6005(6)$	$0.033(3)$
$\mathrm{C}(2)$	$0.7217(4)$	$0.6237(5)$	$0.5707(6)$	$0.034(3)$
$\mathrm{P}(2)$	$0.7207(1)$	$0.4348(1)$	$0.2081(2)$	$0.0443(8)$
$\mathrm{C}(211)$	$0.6226(5)$	$0.3779(6)$	$0.1172(7)$	$0.056(4)$
$\mathrm{C}(212)$	$0.5797(5)$	$0.2929(6)$	$0.1214(8)$	$0.063(4)$
$\mathrm{C}(213)$	$0.5059(5)$	$0.2513(7)$	$0.0461(9)$	$0.082(5)$
$\mathrm{C}(214)$	$0.4755(6)$	$0.2938(8)$	$-0.033(1)$	$0.101(5)$
$\mathrm{C}(215)$	$0.5168(7)$	$0.3793(8)$	$-0.036(1)$	$0.112(6)$
$\mathrm{C}(216)$	$0.5898(6)$	$0.4214(7)$	$0.0380(9)$	$0.084(5)$
$\mathrm{C}(221)$	$0.7661(5)$	$0.4266(6)$	$0.0810(8)$	$0.062(4)$
$\mathrm{C}(222)$	$0.8401(7)$	$0.4809(8)$	$0.102(1)$	$0.100(7)$
$\mathrm{C}(223)$	$0.8762(8)$	$0.4668(9)$	$0.008(1)$	$0.123(8)$
$\mathrm{C}(224)$	$0.837(1)$	$0.395(1)$	$-0.113(1)$	$0.143(9)$
$\mathrm{C}(225)$	$0.7679(8)$	$0.340(1)$	$-0.135(1)$	$0.133(9)$
$\mathrm{C}(226)$	$0.7305(7)$	$0.3524(7)$	$-0.0441(9)$	$0.091(6)$

(3) (5 mg, 8\%). Anal. Found: C, 32.11; H, 1.84\%; [$M+\mathrm{H}]^{+}$, $1555 . \mathrm{C}_{42} \mathrm{H}_{26} \mathrm{O}_{16} \mathrm{P}_{2} \mathrm{Ru}_{7}$ calc.: C, 32.46 H, 1.56%; M, 1554. $\nu(\mathrm{CO})$ (cyclohexane) 2085s, 2047s, 2036vs, 2013s, $1990 \mathrm{w}, 1970 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right)-18.74(1 \mathrm{H}, \mathrm{s}, \mathrm{RuH}),-17.02$ $(1 \mathrm{H}, \mathrm{d}, J(\mathrm{HP}) 12.0 \mathrm{~Hz}, \mathrm{Ru}-\mathrm{H}),-12.54(1 \mathrm{H}, \mathrm{d}, J(\mathrm{HP}) 18.1 \mathrm{~Hz}, \mathrm{Ru}-\mathrm{H}), 7.28-7.88$ $(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 9.85(1 \mathrm{H}, \mathrm{d}, J(\mathrm{HP}) 10.8 \mathrm{~Hz})$. FAB MS (m / z): 1555, [M]+; 1499-1107, $[M-n \mathrm{CO}]^{+}(n=2-16)$; 1030, $[M-16 \mathrm{CO}-\mathrm{Ph}]^{+}$. A green band (R_{f} 0.20) was recrystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to yield $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{PPh}\right)(\mathrm{CO})_{12}(\eta-\mathrm{PhMe})$ (5) ($5 \mathrm{mg}, 12 \%$), m.p. $>300^{\circ} \mathrm{C}$ (dec.). Anal. Found: M (mass spectrometry), 1043. $\mathrm{C}_{38} \mathrm{H}_{24} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Ru}_{5}$ calc.: $M, 1043$. IR: $\nu(\mathrm{CO})$ (cyclohexane) 2071m, 2034vs, 2013s, $1993 \mathrm{~m}, 1969 \mathrm{~m}, 1949 \mathrm{vw} \mathrm{cm}{ }^{-1}$ (lit. [9] $\nu(\mathrm{CO})$ (cyclohexane) 2071m, 2035vs, 2012s, 1994w (br), 1975(sh), 1967w (br), cm^{-1}). FAB MS (m / z): 1043, $M^{+} ; 1015-707$ ($[M-n \mathrm{CO}]^{+}, n=1-12$). Four other trace bands were not identified.

Crystallography

Unique data sets were measured at $c a .295 \mathrm{~K}$ within the specified $2 \theta_{\text {max }}$ limits using an Enraf-Nonius CAD4 diffractometer ($2 \theta / \theta$ scan mode; monochromatic Mo- K_{α} radiation, $\lambda 0.7107_{3} \AA$); N independent reflections were obtained, N_{o} with $I>3 \sigma(I)$ being considered 'observed' and used in the full matrix least squares refinement after gaussian absorption correction. Anisotropic thermal parameters

Table 5
Non-hydrogen atomic coordinates and equivalent isotropic thermal parameters for 3

Atom	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{Ru}(1)$	$0.74595(7)$	$0.28952(9)$	$0.81543(5)$	$0.0351(6)$
$\mathrm{Ru}(2)$	$0.61887(8)$	$0.15761(9)$	$0.74605(5)$	$0.0392(6)$
$\mathrm{Ru}(3)$	$0.77603(7)$	$0.19079(9)$	$0.71561(5)$	$0.0361(6)$
$\mathrm{Ru}(4)$	$0.64674(7)$	$0.34960(8)$	$0.70785(4)$	$0.0308(6)$
$\mathrm{Ru}(5)$	$0.79199(7)$	$0.36980(8)$	$0.65705(5)$	$0.0324(6)$
$\mathrm{Ru}(6)$	$0.63742(7)$	$0.48295(8)$	$0.62112(4)$	$0.0314(6)$
$\mathrm{Ru}(7)$	$0.79348(7)$	$0.57106(8)$	$0.67335(5)$	$0.0319(6)$
$\mathrm{C}(11)$	$0.6853(9)$	$0.332(1)$	$0.8682(6)$	$0.06(1)$
$\mathrm{O}(11)$	$0.6515(8)$	$0.352(1)$	$0.9017(5)$	$0.093(9)$
$\mathrm{C}(12)$	$0.835(1)$	$0.233(1)$	$0.8735(6)$	$0.06(1)$
$\mathrm{O}(12)$	$0.8911(8)$	$0.1975(9)$	$0.9076(5)$	$0.087(8)$
$\mathrm{C}(21)$	$0.509(1)$	$0.183(1)$	$0.7642(6)$	$0.054(9)$
$\mathrm{O}(21)$	$0.4427(7)$	$0.1989(9)$	$0.7751(4)$	$0.077(8)$
$\mathrm{C}(22)$	$0.6312(9)$	$0.030(1)$	$0.7772(6)$	$0.054(9)$
$\mathrm{O}(22)$	$0.6414(7)$	$-0.0436(8)$	$0.7975(5)$	$0.086(8)$
$\mathrm{C}(23)$	$0.5584(9)$	$0.113(1)$	$0.6732(6)$	$0.049(9)$
$\mathrm{O}(23)$	$0.5233(8)$	$0.0831(9)$	$0.6303(4)$	$0.074(7)$
$\mathrm{C}(31)$	$0.743(1)$	$0.110(1)$	$0.6516(6)$	$0.06(1)$
$\mathrm{O}(31)$	$0.7232(8)$	$0.0646(8)$	$0.6118(5)$	$0.080(8)$
$\mathrm{C}(32)$	$0.889(1)$	$0.222(1)$	$0.6984(6)$	$0.06(1)$
$\mathrm{O}(32)$	$0.9634(7)$	$0.2161(8)$	$0.6959(5)$	$0.078(8)$
$\mathrm{C}(33)$	$0.8135(9)$	$0.086(1)$	$0.7621(6)$	$0.044(8)$
$\mathrm{O}(33)$	$0.8424(7)$	$0.0231(8)$	$0.7935(4)$	$0.067(7)$
$\mathrm{C}(41)$	$0.5770(9)$	$0.384(1)$	$0.7561(5)$	$0.046(9)$
$\mathrm{O}(41)$	$0.5314(6)$	$0.4144(8)$	$0.7828(4)$	$0.060(7)$
$\mathrm{C}(42)$	$0.540(1)$	$0.325(1)$	$0.6509(6)$	$0.047(8)$
$\mathrm{O}(42)$	$0.4696(6)$	$0.3092(8)$	$0.6223(4)$	$0.067(7)$
$\mathrm{C}(51)$	$0.8931(9)$	$0.419(1)$	$0.6385(6)$	$0.050(9)$
$\mathrm{O}(51)$	$0.9599(7)$	$0.4333(8)$	$0.6270(4)$	$0.066(7)$
$\mathrm{C}(52)$	$0.764(1)$	$0.315(1)$	$0.5861(6)$	$0.055(9)$
$\mathrm{O}(52)$	$0.7436(9)$	$0.2845(9)$	$0.5411(5)$	$0.091(9)$
$\mathrm{C}(61)$	$0.5313(9)$	$0.553(1)$	$0.6180(5)$	$0.041(8)$
$\mathrm{O}(61)$	$0.4648(6)$	$0.5902(8)$	$0.6145(4)$	$0.059(7)$
$\mathrm{C}(62)$	$0.5805(9)$	$0.418(1)$	$0.5531(5)$	$0.044(8)$
$\mathrm{O}(62)$	$0.5413(7)$	$0.3788(8)$	$0.5140(4)$	$0.073(7)$
$\mathrm{C}(71)$	$0.9108(9)$	$0.617(1)$	$0.674(6)$	$0.042(8)$
$\mathrm{O}(71)$	$0.9816(6)$	$0.6489(8)$	$0.6786(5)$	$0.070(7)$
$\mathrm{C}(72)$	$0.7723(8)$	$0.691(1)$	$0.7024(5)$	$0.039(7)$
$\mathrm{O}(72)$	$0.7552(7)$	$0.7640(7)$	$0.7223(5)$	$0.067(7)$
$\mathrm{C}(1)$	$0.7753(7)$	$0.4466(9)$	$0.7298(5)$	$0.029(7)$
$\mathrm{C}(2)$	$0.6931(8)$	$0.505(1)$	$0.040(8)$	
$\mathrm{P}(1)$	$0.8208(2)$	$0.804(5)$	$0.033(2)$	
				0.

Table 5 (continued)

Atom	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
C(111)	0.9418(8)	0.4175(9)	0.8233(5)	0.035(7)
C(112)	0.986(1)	0.395(1)	0.8775(6)	0.06 (1)
C(113)	1.079(1)	0.381(1)	0.8939(6)	0.07(1)
C(114)	1.1258(9)	$0.383(1)$	0.8550(7)	$0.07(1)$
C(115)	1.085 (1)	0.402(1)	0.8007(7)	$0.07(1)$
C(116)	0.9909(9)	0.419 (1)	0.7837(6)	$0.046(8)$
C(121)	0.8005(9)	0.5458(9)	0.8350(5)	$0.037(8)$
C(122)	$0.7208(8)$	0.5690(9)	0.8468(6)	$0.037(7)$
C(123)	0.7037(9)	0.659(1)	0.8651(6)	0.06 (1)
C(124)	0.767(1)	0.735(1)	0.8683(7)	0.06(1)
C(125)	0.847(1)	$0.715(1)$	$0.8580(7)$	0.06 (1)
C(126)	0.8609(9)	$0.622(1)$	0.8387(6)	0.049(9)
P(7)	0.7143(2)	0.5990 (3)	$0.5839(2)$	$0.036(2)$
C(711)	0.6655(8)	0.7199(9)	0.5640(5)	0.033(7)
C(712)	0.676(1)	0.769(1)	0.5172(6)	0.054(9)
C(713)	0.639(1)	0.862(1)	$0.5045(7)$	0.08(1)
C(714)	0.593(1)	$0.903(1)$	0.5379(8)	0.09 (1)
C(715)	0.579(1)	0.853(1)	0.5818(7)	0.07(1)
C(716)	0.6134(9)	$0.762(1)$	0.5962(6)	0.050(9)
C(721)	0.7672(8)	$0.570(1)$	0.5286(5)	0.039(8)
C(722)	0.723(1)	0.516(1)	0.4829(6)	0.06 (1)
C(723)	0.767(1)	$0.498(1)$	$0.4411(6)$	0.07(1)
C(724)	0.853(1)	$0.531(1)$	$0.4444(6)$	0.07(1)
C(725)	0.897(1)	0.581(1)	0.4898(6)	0.07(1)
C(726)	0.8534(9)	0.601(1)	0.5315(6)	0.047(9)
$\mathrm{Cl}(11)^{a}$	1.1464(9)	-0.470(1)	1.0162(5)	0.27(1)
$\mathrm{Cl}(12)^{a}$	$1.019(2)$	-0.359(3)	$0.9751(6)$	0.77(5)
$\mathrm{C}(01)^{a}$	$1.085(3)$	-0.376(3)	0.964(2)	0.21(2)

${ }^{a}$ Population $=0.78$.
were refined for the non-hydrogen atoms; $\left(x, y, z, U_{\text {iso }}\right)_{\mathbf{H}}$ were included constrained at estimated values for the non-core hydrogens. Conventional residuals R, R^{\prime} on $|F|$ are quoted, statistical weights derivative of $\sigma^{2}(I)=\sigma^{2}\left(I_{\text {diff }}\right)+$ $0.0004 \sigma^{4}\left(I_{\text {diff }}\right)$ being used. Computation used the xtal 2.6 program system [28] implemented by S.R. Hall; neutral atom complex scattering factors were employed.

Abnormal features / variations in procedure. In the case of 2, despite the acquisition of an extensive data set and tolerable precision in residuals and other refinement variables, core hydrogen atoms could not be confidently assigned from consideration of difference map residues. For 3, the quality of crystals left much to be desired, the available specimen being small, twinned and, seemingly, partly desolvated. Core hydrogen atoms could not be confidently assigned from consideration of difference map residues. From the latter, larger fragments were indicative of solvation by dichloromethane; refinement of the population of the latter model led to a final occupancy of 0.78 .

Acknowledgments

We thank the Australian Research Council for support of this work and Johnson Matthey Technology Centre for a generous loan of $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$.

References

1 Part LXXIV: C.J. Adams, M.I. Bruce, M.J. Liddell and B.K. Nicholson, J. Organomet. Chem., 420 (1991) 105.

2 M.I. Bruce, M.L. Williams, J.M. Patrick and A.H. White, J. Chem. Soc., Dalton Trans., (1985) 1229.
3 J.-C. Daran, O. Kristiansson and Y. Jeannin, C. R. Acad. Sci. Paris, 300 (1985) 943.
4 J.-C. Daran, E. Cabrcra, M.I. Bruce and M.L. Williams, J. Organomet. Chem., 319 (1987) 239.
5 B.F.G. Johnson, J. Lewis, A.D. Massey, P.R. Raithby and W.T. Wong, J. Organomet. Chem., 397 (1990) C28.

6 C.J. Adams, M.I. Bruce, B.W. Skelton and A.H. White, unpublished work.
7 M.I. Bruce, J. Organomet. Chem., 394 (1990) 365.
8 K. Natarajan, L. Zsolnai and G. Huttner, J. Organomet. Chem., 209 (1981) 85.
9 K.J. Edwards, J.S. Field, R.J. Haines and F. Mulla, J. Organomet. Chem., 402 (1991) 113.
10 R.D. Wilson and R. Bau, J. Am. Chem. Soc., 98 (1976) 4687.
11 R.D. Wilson, S.M. Wu, R.A. Love and R. Bau, Inorg. Chem., 17 (1978) 1271.
12 K. Sasvari, P. Main, F.H. Cano, M. Martinez-Ripoll and P. Frediani, Acta Crystallogr., Sect. B, 35 (1979) 87.

13 F. Mansilla, G. Lavigne and J.-J. Bonnet, Acta Crystallogr., Sect. C, 42 (1986) 1011.
14 M.I. Bruce, E. Horn, O. bin Shawkataly, M.R. Snow, E.R.T. Tiekink and M.L. Williams, J. Oganomet. Chem., 316 (1986) 187.
15 J. Puga, A. Arce, D. Braga, N. Centritto, F. Grepioni, R. Castillo and J. Ascanio, Inorg. Chem., 26 (1987) 867.

16 J.R. Shapley, S.I. Richter, M.R. Churchill and R.A. Lashewycz, J. Am. Chem. Soc., 99 (1977) 7384; M.R. Churchill and R.A. Lashewycz, Inorg. Chem., 17 (1978) 1950.

17 M.R. Churchill, R.A. Lashewycz, J.R. Shapley and S.I. Richter, Inorg. Chem., 19 (1980) 1277.
18 B.F.G. Johnson, J. Lewis, B.E. Reichert, K.T. Schorpp and G.M. Sheldrick, J. Chem. Soc., Dalton Trans., (1977) 1417.
19 D.M.P. Mingos and A.S. May, in D.F. Shriver, H.D. Kaesz and R.D. Adams (Eds.), The Chemistry of Metal Cluster Complexes, VCH, New York, 1990, p. 11.
20 M.I. Bruce, M.L. Williams, B.W. Skelton and A.H. White, J. Organomet. Chem., 282 (1985) C53.
21 F. van Gastel, N.J. Taylor and A.J. Carty, J. Chem. Soc., Chem. Commun., (1987) 1049.
22 R.D. Adams, J.E. Babin and M. Tasi, Organometallics, 7 (1988) 503.
23 R.D. Adams, J.E. Babin and M. Tasi, Inorg. Chem., 26 (1987) 2807.
24 R.D. Adams, J.E. Babin and J.T. Tanner, Organometallics, 7 (1988) 2027.
25 P. Frediani, M. Bianchi, A. Salvini, F. Piacenti, S. Ianelli and M. Nardelli, J. Chem. Soc., Dalton Trans., (1990) 1705.
26 C.J. Adams, M.I. Bruce, B.W. Skelton and A.H. White, J. Organomet. Chem., 420 (1991) 87.
27 M.I. Bruce, M.J. Liddell, B.W. Skelton and A.H. White, Organometallics, 10 (1991) 3282.
28 S.A.R. Knox, J.W. Koepke, M.A. Andrews and H.D. Kaesz, J. Am. Chem. Soc., 97 (1975) 3942; M.I. Bruce and M.L. Williams, Inorg. Synth., 26 (1989) 262; 28 (1990) 219.
29 S.R. Hall and J.M. Stewart (Eds.), xtal Users' Manual, Version 2.6, Universities of Western Australia and Maryland, 1989.

[^0]: * For Part LXXIV see ref. 1.

